問題リンク : Walk under a Scorching Sun | Aizu Online Judge

問題概要 :
いくつかのの道と建物に加え太陽がある。
道、建物、太陽はそれぞれ線分、凸多角形+高さ、点として表される。

道の上にあるある点xと太陽を結ぶ直線が建物と交差するなら、
その点xは日陰である。
それ以外の点は日向である。

道の上にある点sから別の道の上にある点tへ移動するときに通らなければならない日向の距離の総和の最小値を求めよ。

解法:
1. 建物からできる影を計算
2. 道を表す線分と影の交点を列挙
3. 線分アレンジメント
4. アレンジメントでできたグラフの辺のうち、影にあたる辺の重みを0にする
5. dijkstraでsからtまでの最短距離を求める

以下備忘録
→ 影を計算する
f:id:tei3344:20170704004837p:plain

ちなみに、問題文中に書いてあったかどうかわからないが、
道と建物が接点をもつことはないらしい

コード :

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cassert>
#include<cmath>
#include<complex>
#include<cstring>
#include<climits>
#include<vector>
#include<algorithm>
#include<queue>
#include<deque>
#include<bitset>
#include<sstream>
#include<map>
#include<set>

#define REP(i,s,n) for(int i=s;i<n;++i)
#define rep(i,n) REP(i,0,n)
#define EPS (1e-7)
#define equals(a,b) (fabs((a)-(b))<EPS)
#define COUNTER_CLOCKWISE 1
#define CLOCKWISE -1 
#define ONLINE_BACK 2
#define ONLINE_FRONT -2
#define ON_SEGMENT 0


using namespace std;

const bool debug = false; // DEBUG - DEBUG - DEBUG - DEBUG - DEBUG - DEBUG - DEBUG - DEBUG - DEBUG
 
inline double toRad(double theta){
  return theta * M_PI / 180.0;
}

// x >= y
bool GTE(double x, double y){ return equals(x,y) || x > y; }
 
// x > y
bool GT(double x, double y){ return !equals(x,y) && x > y; }
 
// x < y
bool LT(double x, double y){ return !equals(x,y) && x < y; }
 
// x <= y
bool LTE(double x, double y){ return equals(x,y) || x < y; }

// -- Library 2d -- BEGIN ----------------------------------------
class Point{
public:
  double x,y;
 
  Point(double x = 0,double y = 0): x(x),y(y){}
 
  Point operator + (Point p){return Point(x+p.x,y+p.y);}
  Point operator - (Point p){return Point(x-p.x,y-p.y);}
  Point operator * (double a){return Point(a*x,a*y);}
  Point operator / (double a){return Point(x/a,y/a);}
  Point operator * (Point a){ return Point(x * a.x - y * a.y, x * a.y + y * a.x); }
 
  bool operator < (const Point& p) const{ return !equals(x,p.x)?x<p.x:(!equals(y,p.y)&&y<p.y); }
 
  bool operator == (const Point& p)const{ return fabs(x-p.x) < EPS && fabs(y-p.y) < EPS; }
 
};
 
struct Segment{
  Point p1,p2;
  Segment(Point p1 = Point(),Point p2 = Point()):p1(p1),p2(p2){}
  bool operator <  (const Segment& s) const { return ( p2 == s.p2 ) ? p1 < s.p1 : p2 < s.p2; }
  bool operator == (const Segment& s) const { return ( s.p1 == p1 && s.p2 == p2 ) || ( s.p1 == p2 && s.p2 == p1 ); }
 
};
 
typedef Point Vector;
typedef Segment Line;
typedef vector<Point> Polygon;
 
ostream& operator << (ostream& os,const Point& a){ return os << "(" << a.x << "," << a.y << ")"; }
 
ostream& operator << (ostream& os,const Segment& a){ return os << "( " << a.p1 << " , " << a.p2 << " )"; }
 
double dot(Point a,Point b){ return a.x*b.x + a.y*b.y; }
 
double cross(Point a,Point b){ return a.x*b.y - a.y*b.x; }
 
double norm(Point a){ return a.x*a.x+a.y*a.y; }
 
double abs(Point a){ return sqrt(norm(a)); }
 
//rad は角度をラジアンで持たせること
Point rotate(Point a,double rad){ return Point(cos(rad)*a.x - sin(rad)*a.y,sin(rad)*a.x + cos(rad)*a.y); }
 
// a => prev, b => cur, c=> next
// prev から cur へ行って next へ行く際の角度を求める
double getArg(Point a,Point b,Point c){
  double arg1 = atan2(b.y-a.y,b.x-a.x);
  double arg2 = atan2(c.y-b.y,c.x-b.x);
  double arg = fabs( arg1 - arg2 );
  while( arg > M_PI ) arg -= 2.0 * M_PI;
  return fabs(arg);
}

int ccw(Point p0,Point p1,Point p2){
  Point a = p1-p0;
  Point b = p2-p0;
  if(cross(a,b) > EPS)return COUNTER_CLOCKWISE;
  if(cross(a,b) < -EPS)return CLOCKWISE;
  if(dot(a,b) < -EPS)return ONLINE_BACK;
  if(norm(a) < norm(b))return ONLINE_FRONT;
  return ON_SEGMENT;
}

bool intersectLL(Line l, Line m) {
  return abs(cross(l.p2-l.p1, m.p2-m.p1)) > EPS || // non-parallel
         abs(cross(l.p2-l.p1, m.p1-l.p1)) < EPS;   // same line
}
bool intersectLS(Line l, Line s) {
  return cross(l.p2-l.p1, s.p1-l.p1)*       // s[0] is left of l
         cross(l.p2-l.p1, s.p2-l.p1) < EPS; // s[1] is right of l
}
bool intersectLP(Line l,Point p) {
  return abs(cross(l.p2-p, l.p1-p)) < EPS;
}
bool intersectSS(Line s, Line t) {
  return ccw(s.p1,s.p2,t.p1)*ccw(s.p1,s.p2,t.p2) <= 0 &&
         ccw(t.p1,t.p2,s.p1)*ccw(t.p1,t.p2,s.p2) <= 0;
}
bool intersectSP(Line s, Point p) {
  return abs(s.p1-p)+abs(s.p2-p)-abs(s.p2-s.p1) < EPS; // triangle inequality
}
 
Point projection(Line l,Point p) {
  double t = dot(p-l.p1, l.p1-l.p2) / norm(l.p1-l.p2);
  return l.p1 + (l.p1-l.p2)*t;
}
Point reflection(Line l,Point p) {
  return p + (projection(l, p) - p) * 2;
}
double distanceLP(Line l, Point p) {
  return abs(p - projection(l, p));
}
double distanceLL(Line l, Line m) {
  return intersectLL(l, m) ? 0 : distanceLP(l, m.p1);
}
 
double distanceLS(Line l, Line s) {
  if (intersectLS(l, s)) return 0;
  return min(distanceLP(l, s.p1), distanceLP(l, s.p2));
}
double distanceSP(Line s, Point p) {
  Point r = projection(s, p);
  if (intersectSP(s, r)) return abs(r - p);
  return min(abs(s.p1 - p), abs(s.p2 - p));
}
 
double distanceSS(Line s, Line t) {
  if (intersectSS(s, t)) return 0;
  return min(min(distanceSP(s, t.p1), distanceSP(s, t.p2)),
             min(distanceSP(t, s.p1), distanceSP(t, s.p2)));
}
 
Point crosspoint(Line l,Line m){
  double A = cross(l.p2-l.p1,m.p2-m.p1);
  double B = cross(l.p2-l.p1,l.p2-m.p1);
  if(abs(A) < EPS && abs(B) < EPS){
    vector<Point> vec;
    vec.push_back(l.p1),vec.push_back(l.p2),vec.push_back(m.p1),vec.push_back(m.p2);
    sort(vec.begin(),vec.end());
    assert(vec[1] == vec[2]); //同じセグメントかもよ
    return vec[1];
    //return m.p1;
  }
  if(abs(A) < EPS)assert(false);
  return m.p1 + (m.p2-m.p1)*(B/A);
}

struct Edge {
  int from,to;
  double cost;
  Edge(int from=0,int to=0,double cost=0):from(from),to(to),cost(cost){}
  bool operator < (const Edge& a)const { return !equals(cost,a.cost) && cost < a.cost; }
};
 
vector<vector<Edge> > segmentArrangement(vector<Segment> vs,vector<Point> &ps) {
/*
端点もいれたいなら
ここであらかじめ端点だけpsにいれる
*/
  rep(i,(int)vs.size())
    REP(j,i+1,(int)vs.size())
    if(intersectSS(vs[i],vs[j]))
      ps.push_back(Point(crosspoint(vs[i],vs[j])));
 
  sort(ps.begin(),ps.end());  
  ps.erase(unique(ps.begin(),ps.end()),ps.end());
 
  vector<vector<Edge> > ret(ps.size());
 
  for(int i=0;i<(int)vs.size();i++){
    vector<pair<double,int> > list;
    rep(j,(int)ps.size()) if(intersectSP(vs[i],ps[j]))list.push_back(pair<double,int>(norm(vs[i].p1-ps[j]),j));
    sort(list.begin(),list.end());
    for(int j=0;j+1<(int)list.size();++j) {
      int from = list[j].second, to = list[j+1].second;
      double cost = abs(ps[from]-ps[to]);
      ret[from].push_back(Edge(from,to,cost));
      ret[to].push_back(Edge(to,from,cost));
    }
  }  
  return ret;
}
 
//cross product of pq and pr
double cross3p(Point p,Point q,Point r) { return (r.x-q.x) * (p.y -q.y) - (r.y - q.y) * (p.x - q.x); }
  
//returns true if point r is on the same line as the line pq
bool collinear(Point p,Point q,Point r) { return fabs(cross3p(p,q,r)) < EPS; }
  
//returns true if point t is on the left side of line pq
bool ccwtest(Point p,Point q,Point r){
  return cross3p(p,q,r) > 0; //can be modified to accept collinear points
}
 
bool onSegment(Point p,Point q,Point r){
  return collinear(p,q,r) && equals(sqrt(pow(p.x-r.x,2)+pow(p.y-r.y,2)) + sqrt(pow(r.x-q.x,2) + pow(r.y-q.y,2) ),sqrt(pow(p.x-q.x,2)+pow(p.y-q.y,2)) ) ;
}
  
 
bool isConvex(vector<Point> p) {
  int sz = (int)p.size();
  if(sz < 3)return false;//boundary case, we treat a point or a line as not convex
  bool isLeft = ccwtest(p[0],p[1],p[2]);
  for(int i=1; i<(int)p.size();i++)
    if(ccwtest(p[i],p[(i+1)%sz],p[(i+2)%sz]) != isLeft) return false;
  return true;
}
 
 
double angle(Point a,Point b,Point c) {
  double ux = b.x - a.x, uy = b.y - a.y;
  double vx = c.x - a.x, vy = c.y - a.y;
  return acos((ux*vx + uy*vy)/sqrt((ux*ux + uy*uy) * (vx*vx + vy*vy)));
}  
  
//多角形poly内(線分上も含む)に点pが存在するかどうは判定する  
bool inPolygon(Polygon poly,Point p){
  if((int)poly.size() == 0)return false;
  rep(i,(int)poly.size()) if(onSegment(poly[i],poly[(i+1)%poly.size()],p))return true;
  double sum = 0;
  for(int i=0; i < (int)poly.size() ;i++) {
    if( equals(cross(poly[i]-p,poly[(i+1)%poly.size()]-p),0.0) ) continue; // 3点が平行だとangleがnanを返しsumがnanになり死ぬ
    if( cross3p(p,poly[i],poly[(i+1)%poly.size()]) < 0 ) sum -= angle(p,poly[i],poly[(i+1)%poly.size()]);
    else                                                 sum += angle(p,poly[i],poly[(i+1)%poly.size()]);
  }
  // あまり誤差を厳しくしすぎると良くないので以下のほうが良い 
  const double eps = 1e-5;
  return (fabs(sum - 2*M_PI) < eps || fabs(sum + 2*M_PI) < eps);
}  


bool inPolygon(const Polygon &poly,Segment seg){
  vector<Point> vp;
  vp.push_back(seg.p1);
  vp.push_back(seg.p2);
  rep(i,(int)poly.size()) {
    Segment edge = Segment(poly[i],poly[(i+1)%(int)poly.size()]);
    if( equals(cross(seg.p1-seg.p2,edge.p1-edge.p2),0.0) ) {
      if( onSegment(seg.p1,seg.p2,edge.p1) ) vp.push_back(edge.p1);
      if( onSegment(seg.p1,seg.p2,edge.p2) ) vp.push_back(edge.p2);
    } else {
      if( intersectSS(seg,edge) ) vp.push_back(crosspoint(seg,edge));
    }
  }
  sort(vp.begin(),vp.end());
  vp.erase(unique(vp.begin(),vp.end()),vp.end());
  rep(i,(int)vp.size()-1) {
    Point middle_point = ( vp[i] + vp[i+1] ) / 2.0;
    if( !inPolygon(poly,middle_point) ) return false;
  }
  return true;  
}
 
Polygon andrewScan(Polygon s)
{
  Polygon u,l;
  if((int)s.size() < 3)return s;
 
  sort(s.begin(),s.end());
 
  u.push_back(s[0]);
  u.push_back(s[1]);
  l.push_back(s[s.size()-1]);
  l.push_back(s[s.size()-2]);
 
  for(int i=2;i<(int)s.size();i++)
    {
      for(int n=(int)u.size();n >= 2 && ccw(u[n-2],u[n-1],s[i]) != CLOCKWISE; n--)
	u.pop_back();
      u.push_back(s[i]);
    }
 
  for(int i=(int)s.size()-3; i>=0 ; i--)
    {
      for(int n=(int)l.size(); n >= 2 && ccw(l[n-2],l[n-1],s[i]) != CLOCKWISE; n--)
	l.pop_back();
      l.push_back(s[i]);
    }
 
  reverse(l.begin(),l.end());
 
  for(int i = (int)u.size()-2; i >= 1; i--) l.push_back(u[i]);
 
  return l;
}


// -- Library 2d -- END   ----------------------------------------

struct Data {
  int cur;
  double v;
  bool operator < (const Data &data) const {
    //return v > data.v;
    return LT(data.v,v); // data.v < v
  }
};

double dijkstra(vector<vector<Edge>> &G,int s,int t) {

  int V = G.size();
  vector<double> mini(V,1e8);

  priority_queue<Data> Q;
  Q.push((Data){s,0});
  mini[s] = 0;

  while( !Q.empty() ) {
    Data data = Q.top(); Q.pop();
    rep(i,(int)G[data.cur].size()) {
      Edge &e = G[data.cur][i];
      if( LT(data.v+e.cost,mini[e.to]) ) {
	mini[e.to] = data.v + e.cost;
	Q.push((Data){e.to,mini[e.to]});
      }
    }
  }
  assert( !equals(mini[t],1e8) );
  return mini[t];
}

inline bool is_parallel(Segment s,Segment t) { return equals(cross(s.p1-s.p2,t.p1-t.p2),0.0); }

const double rho = 1e5;
Polygon calc_shadow(Polygon &poly,double H,double theta,double phi) {
  assert( poly.size() >= 3 );
  assert( !( is_parallel(Segment(poly[0],poly[1]),Segment(poly[1],poly[2])) ) );
  
  theta = toRad(theta);
  phi   = toRad(phi);
  if( debug ) {
    cout << "theta = " << theta << " and phi = " << phi << endl;
  }
  Polygon shadow_poly;
  rep(i,(int)poly.size()) {
    double r = H / tan(phi);
    Vector v = Vector(r*cos(theta),r*sin(theta));
    shadow_poly.push_back(poly[i]-v);
  }
  rep(i,(int)poly.size()) shadow_poly.push_back(poly[i]);
  return andrewScan(shadow_poly);
}

void compute(vector<double> &H,vector<Polygon> &polies,vector<Segment> &segs,double theta,double phi,Point &s,Point &t) {  
  // 影のグラフを構築
  vector<Polygon> shadow_polies;
  rep(i,(int)polies.size()) {
    shadow_polies.push_back(calc_shadow(polies[i],H[i],theta,phi));
    if( debug ) {
      puts("");
      cout << i << "-th polygon (MINE)" << endl;
      rep(j,(int)shadow_polies[i].size()) {
	cout << shadow_polies[i][j] << endl;
      }
      puts("");
    }
  }
  
  if( debug ) {
    puts("");
    cout << "--- graph construction was finished! ---" << endl;
    puts("");
  }

  // 交点列挙
  vector<Point> ps;
  rep(i,(int)segs.size()) {
    ps.push_back(segs[i].p1);
    ps.push_back(segs[i].p2);
  }
  ps.push_back(s);
  ps.push_back(t);
  rep(i,(int)shadow_polies.size()) {
    int V = shadow_polies[i].size();
    rep(j,V) {
      Segment seg = Segment(shadow_polies[i][j],shadow_polies[i][(j+1)%V]);
      rep(k,(int)segs.size()) {
	if( intersectSS(seg,segs[k]) ) {
	  ps.push_back(crosspoint(seg,segs[k]));
	}
      }
    }
  }

  if( debug ) {
    puts("");
    cout << "--- enumeration was finished! ---" << endl;
    puts("");
  }

  // グラフ構築
  vector<vector<Edge>> G = segmentArrangement(segs,ps);
  assert( G.size() == ps.size() );

  if( debug ) {
    puts("");
    cout << "--- arrangement was finished! ---" << endl;
    puts("");
  }

  // 重み付け (中間地点が影に含まれてたら重み0)
  rep(i,(int)G.size()) {
    rep(j,(int)G[i].size()) {
      Edge &e = G[i][j];
      Point mp = (ps[e.from]+ps[e.to])/2.0;
      bool in_shadow = false;
      rep(k,(int)shadow_polies.size()) {
	if( inPolygon(shadow_polies[k],mp) ) {
	  in_shadow = true;
	  break;
	}
      }
      if( in_shadow ) {
	e.cost = 0;
      }
    }
  }

  if( debug ) {
    puts("");
    cout << "--- weighting was finished! ---" << endl;
    puts("");
  }
  
  // dijkstra
  int sp=-1,ep=-1;
  rep(i,(int)ps.size()) {
    if( ps[i] == s ) sp = i;
    if( ps[i] == t ) ep = i;
  }
  assert( sp != -1 );
  assert( ep != -1 );
  printf("%.10f
",dijkstra(G,sp,ep));
}


int main() {
  int N,M;
  while( cin >> N >> M, N|M ) {
    vector<double> H(N);
    vector<Polygon> polies(N);
    rep(i,N) {
      int V;
      cin >> V >> H[i];
      polies[i].resize(V);
      rep(j,V) cin >> polies[i][j].x >> polies[i][j].y;
    }
    vector<Segment> segs(M);
    rep(i,M) cin >> segs[i].p1.x >> segs[i].p1.y >> segs[i].p2.x >> segs[i].p2.y;
    double theta,phi;
    cin >> theta >> phi;
    Point s,t;
    cin >> s.x >> s.y;
    cin >> t.x >> t.y;

    /*
    rep(i,N) {
      int V = polies[i].size();
      rep(j,V) {
	Segment seg = Segment(polies[i][j],polies[i][(j+1)%V]);
	rep(k,M) {
	  assert( !intersectSS(seg,segs[k]) );
	}
      }
    }
    */

    compute(H,polies,segs,theta,phi,s,t);
  }
  return 0;
}